
6 Tensors

A famously annoying definition of a tensor is:

A tensor is something whose components transform like a tensor

This becomes even more annoying when you appreciate that this is, in fact, one of

the better definitions of a tensor. The purpose of this section is to explain why this

definition is not as dumb as it sounds and to give some insight into what it means to

be a tensor.

Very roughly speaking, tensors are generalisations of objects like vectors and matri-

ces. In index notation, a vector has a single index while a matrix has two indices. A

tensor is an object with any number of indices, something like Tij...k.

However, this simplistic description hides the most important property of a tensor.

Vectors, matrices and, more generally, tensors are more than just a list of numbers.

Instead, those numbers should be thought of as a useful way of characterising the un-

derlying object and, because of this, inherit some properties of that underlying object.

As we will see, the key property is how the list of numbers transform under a change

of basis.

We will start by explaining this in more detail, firstly with vectors and then building

up to the definition of a tensor. Initially we will keep the discussion restricted to some

(admittedly rather dry) mathematical formalism. Then, in Section 6.2 we will describe

some physical examples.

6.1 What it Takes to Make a Tensor

Not any list of n numbers constitutes a vector in Rn. Or, said more precisely, not any

list of n numbers constitutes the components of a vector in Rn. For example, if you

write down the heights of the first three people you met this morning, that doesn’t make

a vector in R3. Instead, a vector comes with certain responsibilities. In particular, the

components describe an underlying object which should be independent of the choice

of basis. As we now explain, that means that the components should transform in the

right way under rotations.

We consider a point x 2 Rn. If we wish to attach some coordinates to this point, we

first need to introduce a set of basis vectors {ei} with i = 1, . . . , n. We will take these

to be orthonormal, meaning that ei · ej = �ij. Any vector can then be expressed as

x = xiei (6.1)
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Usually we conflate the components xi = (x1, . . . , xn) with the “vector”. But, for our

purposes, we should remember that these are just a useful way of representing the more

abstract object x. In particular, we’re entirely at liberty to take a di↵erent set of basis

vectors,

e0
i
= Rijej

If we ask that e0
i
are also orthonormal, so e0

i
· e0

j
= �ij, then we have

e0
i
· e0

j
= RikRjl ek · el = RikRjk = �ij

or, in matrix notation,

RRT = 1

Matrices of this kind are said to be orthogonal. We write R 2 O(n). Taking the

determinant, we have detR = ±1. Those matrices with detR = +1 correspond to

rotations and are said to be special orthogonal. We write R 2 SO(n). In R3, a

rotation R 2 SO(3) takes a right-handed orthonormal basis into another right-handed

orthonormal basis. Those matrices with detR = �1 correspond to a rotation together

with a reflection and take a right-handed basis to a left-handed basis.

Under a change of basis, the vector x itself doesn’t change. But its components do.

We have

x = xiei = x0
i
e0
i
= x0

i
Rijej

So the components transform under the same rotation matrix R,

xj = Rijx
0
i

) x0
i
= Rijxj (6.2)

A tensor T is a generalisation of these ideas to an object with more indices. Just as

the vector x has an identity independent of any choice of basis, so too does the tensor

T . But when measured with respect to a chosen basis {ei}, a tensor of rank p has

components Ti1...ip . When we change the basis using (6.1), the tensor transforms as

T 0
i1...ip

= Ri1j1 . . . RipjpTj1...jp (6.3)

This is known as the tensor transformation rule. A tensor of rank p is sometimes

referred to simply as a p-tensor.
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The simplest examples of tensors are very familiar. A tensor of rank 0 is just a

number, or scalar, T . Here there’s no requirement because a number doesn’t change if

you do a rotation: T 0 = T . So any single number can be said to be a tensor, although

it isn’t a particularly helpful designation.

A tensor of rank 1 is a vector. Here, however, it’s important that the components of

the vector transform as T 0
j
= RijTj. If they don’t transform in this way, then you don’t

have a tensor on your hands. You just have a bunch of numbers.

A tensor of rank 2 is a matrix that transforms as T 0
ij
= RikRjlTkl. Again, the trans-

formation property is key. Just because you have an array of numbers Aij, arranged

in an n⇥ n grid, doesn’t mean that you have a 2-tensor. You have to check the trans-

formation property holds. Otherwise, as with a vector, the array of numbers isn’t a

tensor; it’s just a bunch of numbers.

What’s a Tensor and What’s Not?

It’s worth elaborating on the definition of a tensor. For example, suppose that someone

hands you a matrix, say

Tij =

0

BB@

3 8 0

5 �4 3

1 1 3

1

CCA

and asks you: “is this a tensor?”. It’s natural to answer yes. After all, it’s written as

Tij which is the name we’ve given to a tensor. And it looks for all the world like a

matrix. So is it a tensor? The answer is: we don’t know. We haven’t been given enough

information. As we’ve stressed several times, a tensor isn’t just a bunch of numbers

arranged in some pattern. This sometimes goes by the name of an array of numbers.

Instead, we only know that a given array of numbers is a tensor if it transforms as

(6.3). That means that we need to firstly know what basis the array of numbers above

has been measured in. And then we need to know what the array looks like when

measured in other bases. Only then do we have enough information to say whether

this is a tensor or not. It’s a tensor only if transforms as (6.3): this transformation law

is the definition of a tensor.
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Here’s another example. In a given basis, the position of a point is given by xi. We

write this as the components of a vector

xi =

0

BB@

x

y

z

1

CCA

This is a tensor. Indeed, our starting point is that the components of this simple vector

transforms in the tensorial way (6.2). This is just the statement that the components

of this vector transform in the familiar way under rotation.

Suppose that you now square each of these elements and decide to write them as a

column vector. We’ll give it a fancy name ⇤i, complete with that hanging i index,

⇤i =

0

BB@

x2

y2

z2

1

CCA

That i index makes this look for all the world like it’s a tensor. But it’s not. We know

that after a rotation, xi ! x0
i
= Rijxj. This means that if we do a rotation and then

measure the components of the array ⇤0
i
we get

⇤0
i
=

0

BB@

(R11x+R12y +R13z)2

(R21x+R22y +R33z)2

(R31x+R32y +R33z)2

1

CCA

But that’s most definitely not how a tensor transforms! It’s not the rule (6.3) that we

wanted. The upshot is that ⇤i is not a tensor and it was a little bit naughty to write

it as ⇤i because it suggests that it has some property that it doesn’t.

Relatedly, this explains something that you may have wondered about in school.

Suppose that you’re given two vectors. You know that you can take an inner product

to get a scalar, or you can take the cross-product to get another vector. But what stops

you from doing something much simpler, just multiplying the component of one vector

with the corresponding component of another vector to get a third vector. It seems

like such an obvious thing to do. But it’s a bad thing to do, precisely because the thing

you end up with is not a tensor. It does not transform in the way (6.2), which is how

components of a vector should transform.
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There is a similar story for matrices. If you have two matrices, then there’s a ridicu-

lously complicated way to multiply them, multiplying rows with columns. Why don’t

we just do something much simpler and multiply entries together component by compo-

nent? You’ve probably guessed the answer by now. If we started with genuine matrices,

meaning that they transform (6.3), then the object that you get if you do proper matrix

multiplication will also transform as (6.3), but the simpler, stupid way to multiplying

will not.

Why are we making such a big deal about this? What is so special about things

that transform nicely as (6.3) under rotations? Well, there are several answers to this,

depending on taste. At the most basic level, if you’re a physicist, then you might

genuinely want to know how something looks in di↵erent, rotated frames of reference.

Moreover, once you realise that there’s a preferred way for things to transform —

the tensor way (6.3) – this brings some extra power to the calculations, a little like

dimensional analysis. Suppose that you have an equation of the form “left-hand side”

= “right-hand side”. If the thing on the left is a tensor then the thing on the right

better also be a tensor. And sometimes there’s not many tensors available, which limits

your options for what the thing on the right can actually be. We’ll see an example of

this in Section 6.1.3 when we’ll use tensors to make some scary looking integrals a little

more palatable.

The discussion above is very much from a physics perspective. But what about a

pure maths perspective? This gives a more formal, but arguably cleaner, definition of

a tensor. We’ll explain this imminently in Section 6.1.1.

We’ll meet a number of tensors as we proceed. But there is a one that is special:

this is the rank 2 tensor �ij or, equivalently, the unit matrix. Importantly, it has the

same 0 and 1 entries in any basis because, under the transformation (6.3), it becomes

�0
ij
= RikRjl�kl = �ij

We will devote Section 6.1.3 to “invariant tensors” which, like �ij, take the same form

in any basis.

6.1.1 Tensors as Maps

There is something a little strange about the definition of a tensor given above. We

first pick a set of coordinates, and the transformation law (6.3) then requires that the

tensor transforms nicely so that, ultimately, nothing depends on these coordinates.

But, if that’s the case, surely there should be a definition of a tensor that doesn’t rely

on coordinates at all!
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There is. A tensor T of rank p is a multi-linear map that takes p vectors, a,b, . . . , c

and spits out a number in R,

T (a,b, . . . , c) = Ti1i2...ipai1bi2 . . . cip (6.4)

Here “multi-linear” means that T is linear in each of the entries a,b, . . . , c individually.

By evaluating T on a all possible vectors a,b, . . . , c, we get the components Ti1i2...ip .

The transformation rule (6.3) is simply the statement that the map T is independent

of the choice of basis, and we can equally well write

T (a,b, . . . , c) = T 0
i1i2...ip

a0
i1
b0
i2
. . . c0

ip

= (Ri1j1Ri2j2 . . . RipjpTj1j2...jp)(Ri1k1ak1)(Ri2k2bk2) . . . (Ripkpckp)

= Tj1j2...jpaj1bj2 . . . cjp

which follows because RTR = 1 or, in components, RijRik = �jk. The key is that this

formula takes the same form in any basis.

Tensors as Maps Between Vectors

Rather than thinking of a tensor as a map from many vectors to R, you can equivalently

think of it as a map from some lower-rank tensor to another. For example, in (6.4),

if you don’t fill in the first entry, then a rank p tensor can equally well be viewed as

taking (p� 1) vectors and spitting out a single vector

ai = Ti j1...jp�1bj1 . . . cjp�1

This is the way that tensors typically arise in physics or applied mathematics, where

the most common example is simply a rank 2 tensor, defined as a map from one vector

to another

u = Tv ) ui = Tijvj

Until now, we’ve simply called T a matrix but for the equation u = Tv to make sense,

T must transform as a tensor (6.3). This is inherited from the transformation rules of

the vectors, u0
i
= Rijuj and v0

i
= Rijvj, giving

u0
i
= T 0

ij
v0
j

with T 0
ij
= RikRjlTkl

Written as a matrix equation, this is T 0 = RTRT .
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6.1.2 Tensor Operations

Given a bunch of tensors, there are some manipulations that leave you with another

tensor. Here we describe these operations.

• We can add and subtract tensors of the same rank, so if S and T are both tensors

of rank p then so too is S + T . We can also multiply a tensor by a constant ↵

and it remains a tensor.

• If S is a tensor of rank p and T a tensor of rank q, then the tensor product S⌦ T

is a tensor of rank p+ q, defined by

(S ⌦ T )i1...ipj1...jq = Si1...ipTj1...jq

You can check that the components of (S⌦T ) do indeed satisfy the transformation

rule (6.3). In particular, if we have p di↵erent vectors a, b, . . . , c then we can

construct a tensor

T = a⌦ b⌦ . . .⌦ c with Ti1...ip = ai1bi2 . . . cip

• Given a tensor T of rank p, we can construct a new tensor S of rank (p � 2) by

contracting on two indices using �ij,

Sk1...kp�2 = �ijTijk1...kp�2

For a rank 2 tensor, the contraction is what we call the trace, TrT = Tii. It’s a

valid tensor operation because the end result is a scalar that does not transform

under rotations

T 0
ii
= RijRikTjk = �jkTjk = Tjj

The same derivation shows that higher rank tensors can also be contracted, with

the additional indices una↵ected by the contraction.

Combining a contraction with a tensor product gives a way to contract two

di↵erent tensors together. For example, given a p-tensor P and q-tensor Q, we

can form a p + q � 2 tensor by contracting, say, the first index on each to get

P ik1...kp�1Qi l1...lq�1 . This may sound abstract, but it’s very much something you’ve

seen before: given a pair of 1-tensors a and b, also known as vectors, we can

combine them to get a 0-tensor, also known as a number

a · b = aibi

This, of course, is just the inner-product. It is a useful operation precisely because

the 0-tensor on the right-hand side is, like all 0-tensors, independent of the choice

of basis that we choose to express the vectors.
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The Quotient Rule

In practice, it’s not hard to recognise a tensor when you see one. In any setting, they’re

usually just objects with a bunch of i and j indices, each of which clearly transforms as

a vector. If in doubt, you can just check explicitly how the thing transforms. (There

are cases where this check is needed. In later courses, you’ll meet an object called the

Levi-Civita connection �i

jk
which looks for all the world like a tensor but turns out, on

closer inspection, to be something more subtle.)

There is a more formal way to say this. Let Ti1...ip+q be a bunch of numbers that you

think might comprise a tensor of rank p + q in some coordinate basis. If Ti1...ip+q are

indeed the components of a tensor then you can feed it a rank q tensor uj1...jq and it

will spit back a rank p tensor

vi1...ip = Tii...ipj1...jquj1...jq (6.5)

There is a converse to this statement. If for every tensor uj1...jq , the output vi1...ip
defined in (6.5) is a tensor, then Tii...ipj1...jq are the components of a tensor. This is

called the quotient rule.

It is straightforward, if a little fiddly, to prove the quotient rule. It’s su�cient to

restrict attention to tensors u formed from the tensor product of vectors uj1...jq =

cj1 . . . djq . Then, by assumption, vi1...ip = Tii...ipj1...jquj1...jq is a tensor. If we then con-

tract with p further vectors a, . . . ,b then vi1...ipai1 . . . bip = Ti1...ipj1...jqai1 . . . bipcj1 . . . djq
is necessarily a scalar. This is then enough to ensure the correct transformation rule

(6.3) for the components Ti1...ipj1...jq .

Symmetry and Anti-Symmetry

The symmetrisation properties of tensors are worthy of comment. A tensor that obeys

Tijp...q = ±Tjip...q

is said to be symmetric (for +) or anti-symmetric (for �) in the indices i and j. If a

tensor is (anti)-symmetric in one coordinate system then it is (anti)-symmetric in any

coordinate system

T 0
ijp...q

= RikRjlRpr . . . RqsTklr...s = ±RikRjlRpr . . . RqsTlkr...s = ±T 0
jip...q

A tensor that is (anti)-symmetric in all pairs of indices is said to be totally (anti)-

symmetric. Note that for tensors in Rn, there are no anti-symmetric tensors of rank

p > n because at least one of the indices must take the same value and so the tensor nec-

essarily vanishes. A totally anti-symmetric tensor of rank p in Rn has
�
n

p

�
independent

components.
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Let’s now restrict our attention to R3. A tensor of rank 2 is our new fancy name

for a 3 ⇥ 3 matrix Tij. In general, it has 9 independent components. We can always

decompose it into the symmetric and anti-symmetric pieces

Sij =
1

2
(Tij + Tji) and Aij =

1

2
(Tij � Tji)

which have 6 and 3 independent components respectively. Our discussion above shows

that S and A are each, themselves, tensors. In fact, the symmetric piece can be

decomposed further,

Sij = Pij +
Q

3
�ij

where Q = Sii is the trace of S and carries a single degree of freedom, while Pij is the

traceless part of S and carries 5. The importance of this decomposition is that A, P

and Q are individually tensors. In contrast, if you were to take, say, the upper-left-hand

component of the original matrix Tij then that doesn’t form a tensor.

In R3, we can also rewrite an anti-symmetric matrix in terms of a vector,

Aij = ✏ijkBk () Bk =
1

2
✏ijkAij

The upshot is that in any 3⇥ 3 matrix can be decomposed as

Tij = Pij + ✏ijkBk +
1

3
�ijQ (6.6)

where Pii = 0.

6.1.3 Invariant Tensors

There are two important invariant tensors in Rn.

• We’ve met the first already: it is the rank 2 tensor �ij. As we noted previously,

this is invariant because

�0
ij
= RikRjl�kl = �ij

Note that �ij is invariant under any R 2 O(n).

• The rank n totally anti-symmetric tensor ✏i1...in . This is defined by ✏12...n = +1.

If you swap any two indices you get a minus sign. In particular, if any two indices

are repeated, the epsilon symbol vanishes. This is invariant because

✏0
i1...in

= Ri1j1 . . . Rinjn✏j1...jn = detR ✏i1...in = ✏i1...in
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Note that the epsilon symbol is only invariant under R 2 SO(n) but it is not

invariant under R 2 O(n) with detR = �1. It picks up a minus sign under

reflections. The invariance of ✏ijk in R3 is the reason why the cross-product

(a ⇥ b)i = ✏ijkajbk is itself a vector. Or, said di↵erently, why the triple product

a · (b⇥ c) = ✏ijkaibjck is independent of the choice of basis.

In general, a tensor is said to be invariant under a given rotation R if

T 0
i1...in

= Ri1j1 . . . RinjnTj1...jn = Ti1...in

A tensor that is invariant under all rotations R is said to be isotropic. Obviously all

tensors of rank 0 are isotropic. What about higher rank tensors?

Claim: The only non-zero isotropic tensors in R3 of rank p = 1, 2 or 3 are Tij = ↵�ij
and Tijk = �✏ijk with ↵ and � constant. In particular, there are no isotropic tensors of

rank 1 (essentially because a vector always points in a preferred direction).

Proof: The idea is simply to look at how tensors transform under a bunch of spe-

cific rotations by ⇡ or ⇡/2 about certain axes.

For example, consider a tensor of rank 1, so that

T 0
i
= RijTj with Rij =

0

BB@

�1 0 0

0 �1 0

0 0 +1

1

CCA (6.7)

Requiring T 0
i
= Ti gives T1 = T2 = 0. Clearly a similar argument, using a di↵erent R,

also gives T3 = 0.

For a tensor of rank 2, consider the transformation

T 0
ij
= R̃ikR̃jlTkl with R̃ij =

0

BB@

0 1 0

�1 0 0

0 0 +1

1

CCA (6.8)

which is a rotation by ⇡/2 about the z-axis. The rotation gives T 0
13 = T23 and T 0

23 =

�T13 so if T 0
ij

= Tij, we must have T13 = T23 = 0. Meanwhile T 0
11 = T22. Similar

arguments tell us that all o↵-diagonal elements must vanish and all diagonal elements

must be equal: T11 = T22 = T33 = ↵ for some ↵. Hence Tij = ↵�ij.
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Finally, for a rank 3 tensor we have

T 0
ijk

= RilRjpRkqTlpq

If we pick R given in (6.7), then we find T 0
133 = �T133 and T 0

111 = �T111. Similar

arguments show that an isotropic tensor must have Tijk = 0 unless i, j and k are all

distinct. Meanwhile, if we pick R = R̃ given in (6.8), then we get T 0
123 = �T213. We

end up with the result we wanted: Tijk is isotropic if and only if Tijk = �✏ijk for some

constant �. ⇤

Although we won’t prove it here, all other isotropic tensors can be formed from �ij
and ✏ijk. For example, the only isotropic 4-tensor in R3 is

Tijkl = ↵�ij�kl + ��ik�jl + ��il�jk

with ↵, � and � constants. You could try to cook up something involving ✏ijk but it

doesn’t give anything new. In particular, ✏ijk✏ilp = �jl�kp � �jp�kl.

There is also an analogous result in Rn: all isotropic tensors can be constructed from

the symmetric 2-tensor �ij and the totally anti-symmetric n-tensor ✏i1...in .

Invariant Integrals

It is sometimes possible to use invariance properties to immediately write down the

index structure of an integral, without doing the hard work of evaluating everything

term by term. Suppose that we have some integral of the form

Tij...k =

Z

V

f(r)xixj . . . xk dV

with r = |x|. Then under a rotation, we have

T 0
ij...k

= RipRjq . . . RkrTpq...r =

Z

V

f(r)x0
i
x0
j
. . . x0

k
dV

with, as usual, x0
i
= Rijxj. But if we now change the integration variables to x0,

both r = |x| = |x0
| and dV = dV 0 are invariant. (The latter because the Jacobian is

detR = 1). If the domain of integration is also rotationally invariant, so V = V 0, then

the final result must itself be an invariant tensor, T 0
ij...k

= Tij...k.
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Here are some examples. First, suppose that we have a 3d integral over the interior

of a sphere of radius R, given by

Ti =

Z

V

⇢(r)xi dV (6.9)

This must be equal to some invariant 1-tensor (i.e. a vector), but there are no such

objects. In other words, we can say immediately that Ti = 0. You can check this

straightforwardly by doing the integral in, say, spherical polar coordinates.

Things change if we look at an integral with two hanging indices,

Tij =

Z

V

⇢(r)xixj dV (6.10)

(In Section 6.2, we will find integrals of this form arising when we compute the inertia

tensor of a sphere.) By the argument above Tij must be an isotropic tensor and hence

proportional to �ij,

Tij =

Z

V

⇢(r)xixj dV = ↵�ij

for some ↵. If we take the trace, we get
Z

V

⇢(r)r2 dV = 3↵

Hence,

Tij =
1

3
�ij

Z

V

⇢(r)r2 dV =
4⇡

3
�ij

Z
R

0

dr ⇢(r)r4 (6.11)

For example, if ⇢(r) = ⇢0 is constant, then Tij =
4
15⇡⇢0R

5�ij.

Here’s a slightly more complicated example (taken from the calculation of Stokes

flow around a sphere in Fluid Mechanics). Consider the surface integral over a sphere

of radius R,

T̃k = aj

Z

S2

dSi

xixjxk

r5

This time we have a vector a in the game, so it must be the case that T̃k = �ak for

some constant �. One way to compute � is to strip o↵ the vector a and instead look at

T̃jk =

Z

S2

dSi

xixjxk

r5
= ��jk
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which now should be proportional to the invariant tensor �jk as shown, with the same

coe�cient � since T̃k = Tjkaj = �ak. At this point, we again take the trace over the j

and k indices to get
Z

S2

dSi

xixjxj

r5
= 3�

But this integral is given by
Z

S2

dSi

xi

r3
=

Z

S2

dS ·
n

r2
= 4⇡

and so we get � = 4⇡/3.

6.1.4 Tensor Fields

A tensor field over R3 is the assignment of a tensor Ti...k(x) to every point x 2 R3.

This is the generalisation of a vector field

F : R3
! R3

to a map of the kind

T : R3
! Rm

with m the number of components of the tensor. So, for example, a map that assigns

a symmetric, traceless rank 2 tensor Pij(x) to every point has m = 5.

The tensor field Ti...k(x) is sometimes denoted as Ti...k(xl) which is supposed to show

that the field depends on all coordinates x1, . . . , x3. It’s not great notation because the

indices as subscripts are supposed to take some definite values, while the index l in the

argument is supposed to denote the whole set of indices. It’s especially bad notation

when combined with the summation convention and we won’t adopt it here.

There is one very famous example of a tensor field. Einstein’s theory of general rela-

tivity is described by a rank 2 tensor at every point in space. This is called the metric.

The dynamics of this rank 2 tensor field describe gravity. (I’ve brushed something

rather important under the rug here. Einstein’s theory is a rank 2 tensor in spacetime,

not just in space. Which means that the rank 2 tensor is a 4⇥ 4 matrix, rather than a

3⇥ 3 matrix.)

Before we move on, it’s worth pausing to mention a slightly subtle point. Not all

maps R3
! R3 qualify as “vector fields”. The point x in the codomain R3 is a vector

and so its components transform in the appropriate way under rotation. To be a vector

field, the components of the map must transform under the same rotation. Similar

comments hold for a tensor field.
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To illustrate this, the electric field E(x) is an example of a vector field. If you rotate

in space, and so change x, then the direction E also changes: the rotation acts on both

the argument x and the function itself E.

In contrast, there are maps R3
! R3 where, although the domain and codomain have

the same dimension, vectors in them transform under di↵erent rotations. For example,

in particle physics there exists an object called a quark field which, for our (admittedly,

slightly dumbed down) purposes, can be thought of as a map R3
! R3. This is a

quantum field whose ripples are the particles that we call quarks, but these details can

be safely ignored for the next couple of years of your life. We will write this field as

qa(x) where the a = 1, 2, 3 label is the “colour” of the quark. If we rotate in space,

then x changes but the colour of the quark does not. There is then an independent

rotation that acts on the codomain and rotates the colour, but leaves the point in space

unchanged. Because the rotations that act on the domain and codomain are unrelated,

the quark field is usually not referred to as a vector field.

Taking Derivatives

Given a tensor field, we can always construct higher rank tensors by taking derivatives.

In fact, we’ve already seen a prominent example of this earlier in these lectures. There,

we started with a scalar field �(x) and di↵erentiated to get the gradient r�. This

means that we start with a rank 0 tensor and di↵erentiate to get a rank 1 tensor.

Strictly speaking, we didn’t previously prove that r� is a vector field. But it’s

straightforward to do so. As we’ve seen above, we need to show that it transforms

correctly under rotations. Any vector v can be decomposed in two di↵erent ways,

v = viei = v0 ie0
i

where {ei} and {e0
i
} are two orthonormal bases, each obeying ei · ej = e0

i
· e0

j
= �ij, and

vi and v0 i are the two di↵erent coordinates for v. If we expand x in this way

x = xiei = x0
i
e0
i

=) xi = (ei · e
0
j
)x0

j
=)

@xi

@x0
j

= ei · e
0
j

Here ei ·e0j is the rotation matrix that takes us from one basis to the other. Meanwhile,

we can always expand one set of basis vectors in terms of the other,

ei = (ei · e
0
j
)e0

j
=

@xi

@x0 j e
0
j

This tells us that we could equally as well write the gradient as

r� =
@�

@xi
ei =

@�

@xi

@xi

@x0 j e
0
j
=

@�

@x0 j e
0
j
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This is the expected result: if you work in a di↵erent primed basis, then you have the

same definition of r�, but just with primes on both e0
i
and @/@x0 i. This means that

the components @i� transform correctly under a rotation, so r� is indeed a vector.

We can extend the result above to any, suitably smooth, tensor field T (x) of rank

p. We can di↵erentiate this any number of times to get a new tensor field of rank, say,

p+ q,

Xi1...iqj1...jp =
@

@xi1

. . .
@

@xiq

Tj1...jp(x) (6.12)

To verify that this is indeed a tensor, we need to check how it changes under a rotation.

In a new basis, we have x0
i
= Rijxj (where Rij = e0

i
· ej in the notation above) and so

@x0
i

@xj

= Rij =)
@

@x0
i

=
@xj

@x0
i

@

@xj

= Rij

@

@xj

which is the result we need for X in (6.12) to qualify as a tensor field.

We can implement any of the tensorial manipulations that we met previously for

tensor fields. For example, if we start with a vector field F(x), we can form a rank 2

tensor field

Tij(x) =
@Fi

@xj

But we saw in (6.6) that any rank 2 tensor field can be decomposed into various pieces.

There is an anti-symmetric piece

Aij(x) = ✏ijkBk(x) with Bk =
1

2
✏ijk

@Fi

@xj

= �
1

2
(r⇥ F)

k

and a trace piece

Q =
@Fi

@xi

= r · F

and, finally, a symmetric, traceless piece

Pij(x) =
1

2

✓
@Fi

@xj

+
@Fj

@xi

◆
�

1

3
r · F

Obviously, the first two of these are familiar tensors (in this case a scalar and vector)

from earlier sections.
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6.2 Physical Examples

Our discussion above was rooted firmly in mathematics. There are many places in

physics where tensors appear. Here we give a handful of examples.

6.2.1 Electric Fields in Matter

Apply an electric field E to a lump of stu↵. A number of things can happen.

If the lump of stu↵ is an insulator then the material will become polarised. This

means that the positive electric charge will be pushed in one direction, the negative

in another until the lump of stu↵ acts like a dipole. (This is described in some detail

in Section 7 of the lectures on Electromagnetism.) One might think that the resulting

polarisation vector P points in the same direction as the electric field E, but that’s too

simplistic. For many lumps of stu↵, the underlying crystal structure allows the electric

charges to shift more freely in some directions than others. The upshot is that the

relation between polarisation P and applied electric field E is given by

P = ↵E

where ↵ is a matrix known as the polarisation tensor. In a given basis, it has compo-

nents ↵ij.

There is a similar story if the lump of stu↵ is a conductor. This time an applied

electric field gives rise to a current density J. Again, the current is not necessarily

parallel to the electric field. The relationship between them is now

J = �E

This is known as Ohm’s law. In general � is a 3⇥ 3 matrix known as the conductivity

tensor; in a given basis, it has components �ij.

What can we say about � when the material is isotropic, meaning that it looks the

same in all directions? In this case, no direction is any di↵erent from any other. With

no preferred direction, the conductivity tensor must be proportional to an invariant

tensor, so that it looks the same in all coordinate systems. What are our options?

For 3d materials, the only option is �ij = ��ij, which ensures that the current

does indeed run parallel to the electric field. In this case � is just referred to as the

conductivity.
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However, suppose that we’re dealing with a thin wafer of material in which both the

current and electric field are restricted to lie in a plane. This changes the story because

now we’re dealing with vectors in R2 rather than R3 and R2 is special because there

are two invariant 2-tensors in this dimension: �ij and ✏ij. This means that the most

general conductivity tensor for an isotropic 2d material takes the form

�ij = �xx�ij + �xy✏ij =

 
�xx �xy

��xy �xx

!

Here �xx is called the longitudinal conductivity while �xy is called the Hall conductivity.

If �xy 6= 0 then an electric field in the x-direction induces a current in the y-direction.

As an aside, it turn out that the seemingly mundane question of understanding

�xy in real materials is closely tied to some of the most interesting breakthroughs in

mathematics in recent decades! This is the subject of the Quantum Hall E↵ect.

6.2.2 The Inertia Tensor

Another simple example of a tensor arises in Newtonian mechanics. A rigid body ro-

tating about the origin can be modelled by some number of masses ma at positions xa,

all moving with velocity ẋa = ! ⇥ xa. Here ! is known as the angular velocity. The

angular velocity ! is related to the angular momentum L by

L = I! (6.13)

with I the inertia tensor. The angular momentum does not necessarily lie parallel to

the angular velocity and, correspondingly, I is in general a matrix, rather than a single

number. In fact, we can easily derive an expression for the inertia tensor. The angular

momentum is

L =
X

a

maxa ⇥ ẋa =
X

a

maxa ⇥ (! ⇥ xa) =
X

a

ma

⇣
|xa|

2! � (xa · !)xa

⌘

In components, Li = Iij!j, where

Iij =
X

a

ma

⇣
|xa|

2�ij � (xa)i(xa)j
⌘

For a continuous object with density ⇢(x), we can replace the sum with a volume

integral

Iij =

Z

V

⇢(x)
⇣
|x|2�ij � xixj

⌘
dV (6.14)

So, for example, I33 =
R
⇢(x2

1 + x2
2) dV and I12 = �

R
⇢x1x2 dV .
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An Example: A Sphere

For a ball of radius R and density ⇢(r), the inertia tensor is

Iij =

Z

V

⇢(r)(r2�ij � xixj) dV

The second of these terms is the integral (6.10) that we simplified in Section 6.1.3 using

isotropy arguments. Using (6.11), we have

Iij =
2

3
�ij

Z

V

⇢(r)r2 dV =
8⇡

3
�ij

Z
R

0

dr ⇢(r)r4

For example, if ⇢(r) = ⇢0 is constant, then Iij = 8
15⇡⇢0R

5�ij = 2
5MR2�ij where M is

the mass of the sphere.

Another Example: A Cylinder

The sphere is rather special because the inertia tensor is proportional to �ij. That’s

not the case more generally. Consider, for example, a solid 3d cylinder of radius a and

height 2L, with uniform density ⇢. The mass is M = 2⇡a2L⇢. We align the cylinder

with the z-axis and work in cylindrical polar coordinates x = r cos� and y = r sin�.

The components of the inertia tensor are then

I33 =

Z

V

⇢(x2 + y2) dV = ⇢

Z 2⇡

0

d�

Z
a

0

dr

Z +L

�L

dz r r2 = ⇢⇡La4

I11 =

Z

V

⇢(y2 + z2) dV = ⇢

Z 2⇡

0

d�

Z
a

0

dr

Z +L

�L

dz r(r2 sin2 �+ z2) = ⇢⇡a2L

✓
a2

2
+

2L2

3

◆

By symmetry, I22 = I11. For the o↵-diagonal elements, we have

I13 = �

Z

V

⇢x1x3 dV = �⇢

Z 2⇡

0

d�

Z
a

0

dr

Z
L

�L

dz r2z cos� = 0

where the integral vanishes due to the � integration. Similarly, I12 = I13 = 0. We find

that the inertia tensor for the cylinder is

I = diag

✓
M

✓
a2

4
+

L2

3

◆
, M

✓
a2

4
+

L2

3

◆
,
1

2
Ma2

◆
(6.15)

Note that the inertia tensor is diagonal in our chosen coordinates.
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The Eigenvectors of the Inertia Tensor

The inertia tensor I defined in (6.14) has a special property: it is symmetric

Iij = Iji

Any symmetric matrix I can always be diagonalised by an appropriate rotation. This

means that there exists an R 2 SO(n) such that

I 0 = RIRT = diag(I1, I2, I3)

Another way of saying this is that any symmetric rank 2 tensor has a basis of orthonor-

mal eigenvectors {ei}, with Ii the corresponding eigenvalues.

In the case of the inertia tensor, the eigenvectors e1, e2 and e3 are called the principal

axes of the solid. It means that any object, no matter how complicated, has its own

preferred set of orthonormal axes embedded within it. If the object has some symmetry,

then the principal axes will always be aligned with this symmetry. This, for example,

was the case for the cylinder that we computed above where aligning the cylinder with

the z-axis automatically gave us a diagonal inertia tensor (6.15).

In general, it will be less obvious where the principal

axes lie. For example, the figure on the right shows the

asteroid Toutatis, which is notable for its lumpy shape.

The principal axes are shown embedded in the asteroid.

From (6.13), the angular momentum L is aligned

with the angular velocity ! only if a body spins about

one of its principal axes. It turns out that, in this

case, nice things happen and the body spins smoothly.

However, if L and ! are misaligned, the body exhibits more complicated tumbling,

wobbling motion as it spins. You can learn all about this in the lectures on Classical

Dynamics. (For what it’s worth, Toutatis does not spin about a principal axes.)

6.2.3 Higher Rank Tensors

You might reasonably complain that, after all that work defining tensors, the examples

that we’ve given here are nothing more exotic than matrices, mapping one vector to

another. And you would be right. However, as we get to more sophisticated theories of

physics, tensors of higher rank do make an appearance. Here we don’t give full details,

but just say a few words to give you a flavour of things to come.
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Perhaps the simplest example arises in the theory of elastic materials. These mate-

rials can be subjected to strain, which describes the displacement of the material at

each point, and stress, which describes the forces acting on the material at each point.

But each of these is itself a 2-tensor (strictly a tensor field). The strain tensor eij is

a symmetric tensor that describes the way the displacement in the xi direction varies

in the xj. The stress tensor �ij describes the component of the force Fi across a plane

normal to xj. These two tensors are related by

�ij = Cijklekl

This is the grown up version of Hooke’s law. In general an elastic material is charac-

terised by the elasticity tensor, also known as the sti↵ness tensor, Cijkl.

Higher rank tensors also appear prominently in more advanced descriptions of ge-

ometry. In higher dimensions, the simple Gaussian curvature that we met in Section 2

isn’t enough to capture all the interesting ways in which spaces can curve in di↵erent

directions. Instead, it is replaced by a 4-tensor Rijkl known as the Riemann curvature.

In the context of physics, this 4-tensor describes the bending of space and time and is

needed for the grown-up version of Newton’s law of gravity.

6.3 A Unification of Integration Theorems

In this final section, we turn back to matters of mathematics. The three integral

theorems that we met in Section 4 are obviously closely related. To end these lectures,

we show how they can be presented in a unified framework. This requires us to introduce

some novel and slightly formal ideas. These go quite a bit beyond what is usually

covered in an introductory course on vector calculus, but we will meet these objects

again in later courses on Di↵erential Geometry and General Relativity. View this

section as a taste of things to come.

6.3.1 Integrating in Higher Dimensions

Our unified framework will give us integral theorems in any dimension Rn. If you look

back at Section 4, you’ll notice that the divergence theorem already holds in any Rn.

Meanwhile, Stokes’ theorem is restricted to surfaces in R3 for the very simple reason

that the cross-product is only defined in R3. This suggests that before we can extend

our integral theorems to higher dimensions, we should first ask a more basic question:

how do we extend the cross product to higher dimensions?
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The introduction of tensors gives us a way to do this. Given two vectors a and b in

R3, the cross-product is

(a⇥ b)i = ✏ijkajbk

From this perspective, the reason that the cross product can only be employed in R3

is because it’s only there that the ✏ijk symbol has three entries. If, in contrast, we’re in

R4 then we have ✏ijkl and so if we feed it two vectors a and b, then we find ourselves

with a tensor of rank 2, Tij = ✏ijklakbl.

The tensors that we get from an epsilon symbol are always special, in the sense

that they are totally anti-symmetric. The anti-symmetry condition doesn’t impose any

extra constraint on a 0-tensor � or a 1-tensor ai as these are just scalar fields and vector

fields respectively. It only kicks in when we get to tensors of rank 2 or higher.

With this in mind, we can revisit the cross product. We can define the cross product

in any dimension Rn: it is a map that eats two vectors a and b and spits back an

anti-symmetric (n� 2)-tensor

(a⇥ b)i1...in�2 = ✏i1...inain�1bin

The only thing that’s special about R3 is that we get back another vector, rather than

a higher dimensional tensor.

There is also a slightly di↵erent role played by the epsilon symbol ✏i1,...,in : it provides

a map from anti-symmetric p-tensors to anti-symmetric (n � p)-tensors, simply by

contracting indices,

✏ : Ti1...ip 7!
1

(n� p)!
✏i1...inTin�p+1...in (6.16)

This map goes by the fancy name of the Hodge dual. (Actually, it’s an entirely trivial

version of the Hodge dual. The proper Hodge dual is a generalisation of this idea to

curved spaces.)

Our next step is to think about what this has to do with integration. Recall that

earlier in these lectures we found two natural ways to integrate vector fields in R3. The

first is along a line
Z

C

F · dx (6.17)
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which captures the component vector field tangent to the line. We can perform this

procedure in any dimension Rn. The second operation is to integrate a vector field over

a surface
Z

S

F · dS (6.18)

where dS points in the direction normal to the surface. This integration captures the

component of the vector field normal to the surface and only makes sense in R3. This

is because it’s only in R3 that a two-dimensional surface has a unique normal. More

operationally, this normal, which is buried in the definition of dS, requires us to use

the cross product. For a parameterised surface x(u, v), the vector area element is

dS =
@x

@u
⇥

@x

@v
du dv

or, in components,

dSi = ✏ijk
@xj

@u

@xk

@v
du dv

Now comes a mathematical sleight of hand. Rather than thinking of (6.18) as the

integral of a vector field projected normal to the surface, instead think of it as the

integral of an anti-symmetric 2-tensor Fij = ✏ijkFk integrated tangent to the surface.

We then have
Z

S

F · dS =

Z

S

Fij dSij with dSij =
1

2

✓
@xj

@u

@xk

@v
�

@xj

@v

@xk

@u

◆
du dv (6.19)

This is the same equation as before, just with the epsilon symbol viewed as part of

the integrand Fij rather than as part of the measure dSi. Note that we’ve retained the

anti-symmetry of the area element dSij that was inherent in our original cross product

definition of dS. Strictly speaking this isn’t necessary because we’re contracting with

anti-symmetric indices in Fij, but it turns out that it’s best to think of both objects

Fij and dSij as individually anti-symmetric.

This new perspective suggests a way to generalise to higher dimensions. In the line

integral (6.17) we’re integrating a vector field over a line. In the surface integral (6.19),

we’re really integrating an anti-symmetric 2-tensor over a surface. The key idea is that

one can integrate a totally anti-symmetric p-tensor over a p-dimensional subspace.
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Specifically, given an anti-symmetric p-tensor, the generalisation of the line integral

(6.17) is the integration over a p-dimensional subspace,

Z

M

Ti1...ip dSi1...ip (6.20)

where dim(M) = p. Here dSi1...ip is a higher dimensional version of the “area element”

defined in (6.19).

Alternatively, the higher dimensional version of the surface integral (6.18) involves

first mapping the p-tensor to an (n� p)-tensor using the Hodge dual. This can subse-

quently be integrated over an (n� p)-dimensional subspace

Z

M̃

Ti1...ip✏i1...ipj1...jn�p dS̃j1...jn�p (6.21)

with dim(M̃) = n� p.

In fact, we’ve already met an integral of the form (6.21) elsewhere in these lectures,

since this is what we’re implicitly doing when we integrate a scalar field over a volume.

In this case the “area element” is just dSi1...in = 1
n!✏i1...in dV and the two epsilon symbols

just multiply to a constant.. When actually computing a volume integral, this extra

machinery is more of a distraction than a help.. But if we want to know how to think

about things more generally then it’s extremely useful.

6.3.2 Di↵erentiating Anti-Symmetric Tensors

We’ve now learned how to integrate anti-symmetric tensors. Our next step is to learn

how to di↵erentiate them. We’ve already noted in (6.12) that we can di↵erentiate a p

tensor once to get a tensor of rank p + 1, but in general di↵erentiating loses the anti-

symmetry property. As we now explain, there is a way to restore it so that when we

di↵erentiate a totally anti-symmetric p tensor, we end up with a totally anti-symmetric

(p+ 1)-tensor.

For a scalar field, things are trivial. We can construct a vector field r� and this is

automatically “anti-symmetric” because there’s nothing to anti-symmetrise.

If we’re given a vector field Fi, we can di↵erentiate and then anti-symmetrise by

hand. I will introduce a new symbol for “di↵erentiation and anti-symmetrisation” and

write

(DF )ij :=
1

2

✓
@Fi

@xj
�

@Fj

@xi

◆
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where the anti-symmetry is manifest on the right-hand side. I should confess that the

notation DF is not at all standard. In subsequent courses, this object is usually viewed

as something called a “di↵erential form” and written simply as dF but the notation

dF is loaded with all sorts of other connotations which are best ignored at this stage.

Hence the made-up notation DF .

In R3, this anti-symmetric di↵erentiation is equivalent to the curl using the Hodge

map (6.16),

(r⇥ F)i = ✏ijk(DF )jk

But now we can extend this definition to any anti-symmetric p-tensor. We can always

di↵erentiate and anti-symmetrise to get a (p+ 1)-tensor defined by

(DT )i1...ip+1 =
1

p+ 1

✓
@Ti1...ip

@xip+1
+ p further terms

◆

where the further terms involve replacing the derivative @/@xip+1 with one of the other

coordinates @/@xj so that the whole shebang is fully anti-symmetric.

Note that, with this definition of D, if we di↵erentiate twice then we take a p-tensor

to a (p+ 2)-tensor. But this (p+ 2)-tensor always vanishes!

(DDT )i1...ip+2 = 0

for any tensor T . This is because we’ll have two derivatives contracted with an epsilon

and is the higher dimensional generalisation of the statements that r ⇥ r� = 0 or

r · (r⇥ F) = 0.

As an aside: this is actually the second time in these lectures that we’ve seen some-

thing vanish when you act twice, although you’d be forgiven for failing to notice the

connection. Here our new anti-symmetric derivative obeys D2(anything) = 0. But we

previously saw that the “boundary of a boundary” is always zero. This means that if

a higher dimensional space (really a manifold) M has boundary @M then @(@M) = 0.

Conceptually, these two ideas are very di↵erent but one can’t help but be struck by

the similarity of the equations D
2(anything) = 0 and @2(anything) = 0, even though

the “anything”’s are very di↵erent objects in the two formulae. It turns out that this

similarity is pointing at a deep connection between the topology of spaces and the

kinds of tensors that one can put on these spaces. In fancy maths words, this is the

link between homology and cohomology.
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Finally, we can now state the general integration theorem. Given an anti-symmetric

p-tensor T , then
Z

M

(DT )i1...ip+1 dSi1...ip+1 =

Z

@M

Ti1...ip dSi1...ip (6.22)

Here dim(M) = p + 1 and, therefore the boundary has dim(@M) = p. Note that we

don’t use a di↵erent letter to distinguish the integration measure over these various

spaces: everything is simply dS and you have to look closer at the indices to see what

kind of space you’re integrating over.

The equation (6.22) is a unification of all integration theorems. It contains the

fundamental theorem of calculus (when p = 0), the divergence theorem (when p = n�1)

and Stokes’ theorem (when p = 1 and Rn = R3). Geometers refer to this generalised

theorem simply as Stokes’ theorem since that is the original result that it resembles

most. The proof is simply a higher dimensional version of the proofs that we sketched

previously.

There is, to put it mildly, quite a lot that I’m sweeping under the rug in the discussion

above. In particular, the full Stokes’ theorem does not hold only in Rn but in a general

curved space known as a manifold. In that context, one has to be a lot more careful

about what kind of tensors we’re dealing with and, as I mentioned above, Stokes’

theorem should be written using a kind of anti-symmetric tensor known as a di↵erential

form. None of this really matters when working in flat space, but the di↵erences become

crucial when thinking about curved spaces. If you want to learn more, these topics will

be covered in glorious detail in later courses on Di↵erential Geometry or, for physicists,

General Relativity.
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What You Really Need

Here are expressions for div, grad, curl and the Laplacian in various coordinate systems.

Cartesian: x = (x, y, z)

rf =
@f

@x
x̂+

@f

@y
ŷ +

@f

@z
ẑ

r · F =
@Fx

@x
+

@Fy

@y
+

@Fz

@z

r⇥ F =

✓
@Fz

@y
�

@Fy

@z

◆
x̂+

✓
@Fx

@z
�

@Fz

@x

◆
ŷ +

✓
@Fy

@x
�

@Fx

@y

◆
ẑ

r
2f =

@2f

@x2
+

@2f

@y2
+

@2f

@z2

Cylindrical Polars: x = (⇢ cos�, ⇢ sin�, z)

rf =
@f

@⇢
⇢̂+

1

⇢

@f

@�
�̂+

@f

@z
ẑ

r · F =
1

⇢

@(⇢F⇢)

@⇢
+

1

⇢

@F�

@�
+

@Fz

@z

r⇥ F =

✓
1

⇢

@Fz

@�
�

@F�

@z

◆
⇢̂+

✓
@F⇢

@z
�

@Fz

@⇢

◆
�̂+

1

⇢

✓
@(⇢F�)

@⇢
�

@F⇢

@�

◆
ẑ

r
2f =

1

⇢

@

@⇢

✓
⇢
@f

@⇢

◆
+

1

⇢2
@2f

@�2
+

@2f

@z2
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Spherical Polars: x = (r sin ✓ cos�, r sin ✓ sin�, r cos ✓)

rf =
@f

@r
r̂+

1

r

@f

@✓
✓̂ +

1

r sin ✓

@f

@�
�̂

r · F =
1

r2
@(r2Fr)

@r
+

1

r sin ✓

@(sin ✓F✓)

@✓
+

1

r sin ✓

@F�

@�

r⇥ F =
1

r sin ✓

✓
@(sin ✓F�)

@✓
�

@F✓
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