Vector Calculus: Example Sheet 3

David Tong, February 2024

We will have covered the material necessary to attempt all these questions by the end
of lecture 19.

1. Consider the line integral
1= ]{ —2?ydx + zy?dy
C

for C a closed curve traversed anti-clockwise in the (x,y)-plane.

(i) Evaluate I when C'is a circle of radius R centred at the origin. Use Green’s theorem
to relate the results for R = b and R = a to an area integral over an appropriate region,
and calculate the area integral directly.

(ii) Now suppose C is the boundary of a square centred at the origin with sides of
length ¢. Show that I does not change if the square is rotated in the (x,y)-plane.

2. Verify Stokes’ theorem for the hemispherical shell S = {z? +¢y*> + 2% = 1,2 > 0},
and the vector field

3. By applying Stokes’ theorem to the vector field a x F for a constant, or otherwise,
show that for a vector field F(x)

%dxxF:/(deV)xF
c S

where C' = 0S5. Verify this result when C'is the boundary of a unit square lying in the
(x,y)-plane, with opposite vertices at (0,0,0) and (1,1,0), and F(x) = x.

4. Let S = {x: |x| = 1} be the surface of a unit sphere. For the vector field

where r = |x|, compute the integral [(F -dS. Deduce that there does not exist a
vector potential for F, i.e. there can be no A for which F =V x A. Compute V - F
and comment on your result.



5*. Consider the following vector field

1
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(yz, —2,0)

where r = |x|. Compute V x A. Does this contradict the result of Question 47 Apply
Stokes’ theorem to V x A on the open surface

S.={x:|x|=1,2*+y* >}
How does this help reconcile the existence of A with the result of Question 47

6. Use Gauss’ flux method to find the electric field E = E(x) due to a spherically
symmetric charge density

0 0<r<a
p(r)=4q porfa a<r<b
0 r>b

Now find the electric potential ¢ = ¢(r) directly from Poisson’s equation by writing
down the general, spherically symmetric solution to Laplace’s equation in each of the
intervals 0 < r < a, a < r < b and r > b, and adding a particular integral where
necessary. You should assume that ¢ and ¢’ are continuous at r = a and » = b. Check
this solution gives rise to the same electric field using E = —V¢.

7. The scalar field ¥(r) only depends on r = |x|. Use Cartesian coordinates and suffix
notation to show

Vo= w0 and VR0 =) + 20,

Verify this result using your expression for the Laplacian in spherical polar coordinates.
Find a non-singular, spherically symmetric solution to the equation V% = 1 for r < R
subject to the requirement that ¢ (R) = 1.

8. Consider a complex valued function f = ¢(z,y) + ib(x,y), with ¢ and ¢ real,
satisfying 0f/0z = 0, where 9/0z = 5(8/0x + i9/dy). Show that V¢ = V2 = 0.
Show also that a curve on which ¢ is constant is orthogonal to a curve on which v is
constant, at a point where they intersect. Find ¢ and ¢ when f = ze*, z = v + iy, and
compare with Question 5 on Examples Sheet 2.



9a. Using Cartesian coordinates (z,y), find all solutions of Laplace’s equation V¢ = 0
in two dimensions of the form ¢ (z,y) = f(z)e*, with a constant. Hence find a solution
on the region 0 < z < a and y > 0 with boundary conditions:

»(0,y) =¥(a,y) =0 and (x,0) = Asin(mz/a)
and ¥ (z,y) — 0 as y — oo.

b. Using the formula for the 2d Laplacian in plane polar coordinates (r, ), verify that
Laplace’s equation in the plane has solutions of the form i (r, 8) = Ar® cos 50, if a and
[ are related appropriately. Hence find solutions on the following regions, with the
given boundary conditions (A a constant):

(i) » < R with ¥(R,0) = Acos#,
(ii)) > R with ¢¥(R,0) = Acos® and (r,0) — 0 asr — oo,

(iii) a <r <b with n-Vi(a,0) =0 and (b,0) = Acos26.

10. Let v and ¢ be scalar functions. Using an integral theorem, establish Green’s
second identity

/ (6V%0 — V?6) dV = / (6V — ) - dS
1% ov

11. Show that if the following boundary value problem has a solution on V', then that
solution is unique:

—V* +1) = p(x)
with n- Vi = f(x) on V.

12. Consider the Laplace equation V21 = 0 on V, subject to the boundary condition
on oV

(n-V)g(x) +¢ = f(x)

where g(x) > 0 on 0V. Show that, if a solution exists, then it is unique. Find a non-
zero solution to Laplace’s equation on |x| < 1 which satisfies the boundary conditions
above with f =0 and g = —1 on |x| = 1.



13. Let u be harmonic on V and v a smooth function that satisfies v = 0 on 9V. Show
that
/ Vu-VodV =0.
1%

Now if w is any function on V with w = w on 9V, show, by considering v = w — wu,

that
/|Vw|2dV2/\Vu\2dV.
v 1%

14*. Show that a harmonic function ¢ at the point a is equal to the average of its
values on the interior of the ball B.(a) = {x : |x — a| < r}, for any > 0. Using this
result for large r and considering V1, or otherwise, prove that if ¢ is bounded and
harmonic on R? then it is constant.

15*. Consider a time-dependent volume V' = V(). The velocity of a point x € V' is

v(x). Show that
d

EVOI(V) = /SV -dS.

Show that, for a scalar function p(x,t),

d dp
— pdV:/ —dV+/ pv -dS .
dt Jv vy O S(t)

This is Reynold’s Transport Theorem. What is the physical interpretation?

[Hint: it is better to think physically about this problem rather than simply trying
to manipulate equations. You might first try constructing a 1d version of the result.]



