
Career
- 2020-: Royal Society University Research Fellow, DAMTP, University of Cambridge
- 2017-2019: Leverhulme Early Career Fellow, DAMTP, University of Cambridge
- 2013-: John and Delia Agar Research Fellow, Sidney Sussex College, University of Cambridge
- 2009-2013: PhD, Trinity College, University of Cambridge. Supervisor: Jonathan Oppenheim.
Research
Sergii is a member of the Department of Applied Mathematics and Theoretical Physics and Centre for Quantum Information and Foundations. His current research interests are Quantum Computation and Quantum Information.
Together with Tom Gur I am co-organizing Cambridge-Warwick Quantum Computing Colloquium
I'm leading (jointly with Bipasha Chakraborty) Quantum Algorithms for Quantum Field Theory project, 2022-2025
I'm leading EPSRC Robust and Reliable Quantum Computing Grant "Structure and symmetry in quantum verification", 2023-2025
Postdoctoral research associates
Thorsten Wahl (2022-)
PhD students
Mitchell Chiew (2020-)
Wilfred Salmon (2021-) [Jointly with Hitachi Cambridge Laboratory]
Josh Cudby (2022-)
Summer research students
Preprints
my arXiv preprints are available here.
Selected Publications
- H. Zheng, Z. Li, J. Liu, S. Strelchuk, R. Kondor "Speeding up learning quantum states through group equivariant convolutional quantum Ansatze", PRX Quantum 4, 020327 (2023)
- D. Stilck França, S. Strelchuk, M. Studziński, "Efficient classical simulation and benchmarking of quantum processes in the Weyl basis", Phys. Rev. Lett.126, 210502 (2021)
- M. Hebenstreit, R. Jozsa, B. Kraus, S. Strelchuk, and M. Yoganathan, "All Pure Fermionic Non-Gaussian States Are Magic States for Matchgate Computations", Phys. Rev. Lett. 123, 080503 (2019)
- V. Havlicek, S. Strelchuk "Quantum Schur sampling circuits can be strongly simulated", Phys. Rev. Lett. 121, 060505 (2018)
- A. Rocchetto, E. Grant, S. Strelchuk, G. Carleo, S. Severini "Learning hard quantum distributions with variational autoencoders", npj Quantum Information Vol.4, 28 (2018)
- D. Elkouss, S. Strelchuk "Superadditivity of private information for any number of uses of the channel", Phys. Rev. Lett. 115, 040501 (2015)
- F. Brandao, A. Harrow, J. Oppenheim, S. Strelchuk "Quantum Conditional Mutual Information, Reconstructed States, and State Redistribution", Phys. Rev. Lett. 115, 050501 (2015)
- H. Buhrman, L. Czekaj, A. Grudka, M. Horodecki, P. Horodecki, M. Markiewicz, F. Speelman, S. Strelchuk "Quantum communication complexity advantage implies violation of a Bell inequality", PNAS March 22, 2016 vol. 113 no. 12 3191-3196
- D. Elkouss, S. Strelchuk, M. Ozols, W. Matthews, D. Perez-Garcia, T. Cubitt "Unbounded number of channel uses are required to see quantum capacity", Nature Communications 6, 7739 (2015)
- R. Jozsa, A. Miyake, S. Strelchuk "Jordan-Wigner formalism for arbitrary 2-input 2-output matchgates and their classical simulation", Quantum Information & Computation Vol. 15, 7-8, 541-556 (2015)
- S. Strelchuk, M. Horodecki, J. Oppenheim “Entanglement Recycling and Generalized Teleportation”, Phys. Rev. Lett. 110, 010505 (2013)
- F. Brandao, J. Oppenheim, S. Strelchuk “When does noise increase the quantum capacity?”, Phys. Rev. Lett. 108, 040501 (2012)
Publications
Correction for Buhrman et al., Quantum communication complexity advantage implies violation of a Bell inequality
– Proc Natl Acad Sci U S A
(2016)
113,
E3050
(DOI: 10.1073/pnas.1606259113)
Quantum communication complexity advantage implies violation of a Bell inequality.
– Proceedings of the National Academy of Sciences of the United States of America
(2016)
113,
3191
(DOI: 10.1073/pnas.1507647113)
Optimal amount of entanglement to distinguish quantum states instantaneously
– Physical Review A
(2015)
92,
052337
(DOI: 10.1103/PhysRevA.92.052337)
Quantum capacity can be greater than private information for arbitrarily many uses
– Leibniz International Proceedings in Informatics, LIPIcs
(2015)
44,
64
(DOI: 10.4230/LIPIcs.TQC.2015.64)
Quantum Conditional Mutual Information, Reconstructed States, and State Redistribution
– Physical review letters
(2015)
115,
050501
Superadditivity of private information for any number of uses of the channel.
– CoRR
(2015)
115,
040501
JORDAN-WIGNER FORMALISM FOR ARBITRARY 2-INPUT 2-OUTPUT MATCHGATES AND THEIR CLASSICAL SIMULATION
– Quantum Information and Computation
(2015)
15,
541
(DOI: 10.26421/qic15.7-8-1)
Unbounded number of channel uses may be required to detect quantum capacity
– Nature communications
(2015)
6,
6739
(DOI: 10.1038/ncomms7739)
Game-theoretic characterization of antidegradable channels
– Journal of Mathematical Physics
(2014)
55,
092202
(DOI: 10.1063/1.4895918)
Publisher’s Note: Generalized Teleportation and Entanglement Recycling [Phys. Rev. Lett. 110, 010505 (2013)]
– Physical Review Letters
(2014)
112,
129901
- <
- 3 of 4