skip to content

Department of Applied Mathematics and Theoretical Physics

A major frontier in cosmic microwave background (CMB) science is the study of secondary anisotropies—temperature and polarization anisotropies induced by the gravitational, electromagnetic, or beyond-standard-model (BSM) interactions of CMB photons with large-scale structure (LSS) over cosmic history. Leveraging their distinct statistical properties and cross-correlations with LSS enables us to isolate these secondary anisotropies from the primary CMB and extract new astrophysical and cosmological information. In this talk, I discuss how secondary anisotropies from electromagnetic interactions (Sunyaev-Zel’dovich effects) and hypothetical BSM particles (dark screening) can serve as probes of fundamental physics. I present a general formalism for capturing the information content of secondary anisotropies. I then give a summary of existing measurements of the kinetic Sunyaev-Zel’dovich (kSZ), polarized Sunyaev-Zel’dovich (pSZ), and dark screening effects. Next I provide an update on how these measurements constrain large-scale homogeneity, primordial non-Gaussianity, isocurvature, and BSM particles (axions and dark photons). Looking ahead to the high-resolution, low-noise, large-volume frontier, I discuss how upcoming observations from the Simons Observatory, combined with LSS surveys like DESI and LSST, will significantly improve these results and allow for novel tests of fundamental physics.

Further information

Time:

06May
May 6th 2025
13:00 to 14:00

Venue:

CMS, Pav. B, CTC Common Room (B1.19) [Potter Room]

Speaker:

Matthew Johnson (Perimeter Institute and York University)

Series:

Cosmology Lunch