skip to content

Theoretical High Energy Particle Physics Group


  • Since 2021  University Professor of Mathematical Physics, Faculty of Mathematics, University of Cambridge
  • Since 2020  University Reader in Mathematical Physics, Faculty of Mathematics, University of Cambridge
  • 2018-2020 University Lecturer  Faculty of Mathematics, University of Cambridge
  • 2014-18 Senior Research Associate Faculty of Mathematics, University of Cambridge.
  • 2011  Title of Professor, awarded by the President of the Republic of Poland.
  • 2006-2014, Newton Trust Lecturer in Mathematics, Faculty of Mathematics, University of Cambridge.
  • 2005 Habilitation.
  • 2003-present, Fellow, Tutor, Director of Studies, Senior Lecturer Clare College Cambridge.
  • 1999-2002 Tutorial Fellow in Applied Mathematics and the Senior Mathematics Tutor at Magdalen College, Oxford. University Lecturer in Mathematics, Mathematical Institute, Oxford.
  • 1995-1998 DPhil: Merton College and Mathematical Institute Oxford.


Twistor Theory, Integrable Systems, Differential Geometry.

Selected Publications

  • Dunajski M., and Tod, K. P. (2019) Conformally isometric embeddings and Hawking temperature. Class. Quant. Grav. 36, 125005.
  • Atiyah, M., Dunajski, M. and Mason, L. (2017) Twistor theory at fifty: from contour integrals to twistor strings. Proceedings of the Royal Society, 473. 20170530 
  • Dunajski M. and Penrose, R. (2017) On the quadratic invariant of binary sextics. Math. Proc. Cambridge Philos. Soc. 162, 435445.
  • Dunajski, M. (2009) Solitons, Instantons & Twistors. Oxford Graduate Texts in Mathematics, Oxford University Press.
  • Bryant, R. L., Dunajski, M. and Eastwood, M. (2009)  Metrisability of two-dimensional projective structures, J. Differential Geometry 83, 465-499
  • Dunajski, M. (2002) Four-manifolds with a parallel real spinor, Proc. Roy. Soc. Lond. A 458, 1205-1222
  • Dunajski, M., Mason, L.J., and Tod, K.P. (2001) Einstein--Weyl geometry, the dKP equation and twistor theory, J. Geom. Phys. 37, 63-93.


Some examples of projective and $c$--projective compactifications of Einstein metrics
M Dunajski, A Waterhouse, R Gover, M Dunajski
– Annales Henri Poincare
Some Examples of Projective and c -projective Compactifications of Einstein Metrics
M Dunajski, AR Gover, A Waterhouse
– Annales Henri Poincare
Conics, Twistors, and anti-self-dual tri-Kähler metrics
M Dunajski, P Tod
– Asian Journal of Mathematics
Einstein metrics, projective structures and the SU(∞) Toda equation
M Dunajski, A Waterhouse
– Journal of Geometry and Physics
An example of the geometry of a 5th-order ODE: The metric on the space of conics in CP 2
M Dunajski, P Tod
– Differential Geometry and its Application
An octahedron of complex null rays, and conformal symmetry breaking
M Dunajski, M Långvik, S Speziale
– Physical Review D - Particles, Fields, Gravitation and Cosmology
Conformally isometric embeddings and Hawking temperature
M Dunajski, P Tod
– Classical and Quantum Gravity
Jumps, folds and singularities of Kodaira moduli spaces.
M Dunajski, J Gundry, P Tod
– J. Lond. Math. Soc.
Gauge Theory on Projective Surfaces and Anti-self-dual Einstein Metrics in Dimension Four
M Dunajski, T Mettler
– The Journal of Geometric Analysis
A note on the Hyper-CR equation, and gauged N=2 supergravity
M Dunajski, J Gutowski, W Sabra
– Physics Letters B
  • <
  • 2 of 10
  • >

Research Group

High Energy Physics