In weakly ionized regions of protoplanetary disks, hydrodynamic instabilities likely play a key role in the development of turbulence, the formation of structures, and the transport of angular momentum. Among these, the vertical shear instability (VSI) stands out as a robust mechanism, requiring only baroclinic stratification and short thermal relaxation timescales to operate. In this talk, I will present results from axisymmetric radiation-hydrodynamical simulations of the VSI in passive, irradiated T Tauri disks, focusing on angular momentum redistribution, the emergence of secondary instabilities, and their role in VSI saturation. I will also discuss how dust and molecular cooling shape the regions where the VSI can operate, and compare these results with current observations of protoplanetary disks.