Career
- 1990-1991 Post-doctoral researcher at MSRI, Berkeley, California.
- 1991-1997 Assistant Professor, University of California at Davis.
- 1997-1999 Associate Professor, University of California at Davis.
- 1999-2005 Lecturer in University of Cambridge
- 1999-present Fellow of St John's College Cambridge
- 2005-present Reader in University of Cambridge
Research
David Stuart's esearch is mainly directed towards the mathematical analysis
of solitons in nonlinear classical field theories (such as
Yang-Mills and Einstein equations), and related problems
in nonlinear analysis.
Selected Publications
- Buslaev, V. S. ; Komech, A. I. ; Kopylova, E. A. ; Stuart, D. On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator. Comm. Partial Differential Equations 33 (2008), no. 4-6, 669--705.
- Stuart, David M. A. Analysis of the adiabatic limit for solitons in classical field theory. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007), no. 2087, 2753--2781.
- Demoulini, Sophia ; Stuart, David M. A. Existence and regularity for generalised harmonic maps associated to a nonlocal polyconvex energy of Skyrme type. Calc. Var. Partial Differential Equations 30 (2007), no. 4, 523--546.
- Stuart, David M. A. The geodesic hypothesis and non-topological solitons on pseudo-Riemannian manifolds. Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 2, 312--362.
- Stuart, David M. A. Geodesics and the Einstein nonlinear wave system. J. Math. Pures Appl. (9) 83 (2004), no. 5, 541--587.
- Demoulini, Sophia ; Stuart, David M. A. ; Tzavaras, Athanasios E. A variational approximation scheme for three-dimensional elastodynamics with polyconvex energy. Arch. Ration. Mech. Anal. 157 (2001), no. 4, 325--344.
- Stuart, David M. A. Modulational approach to stability of non-topological solitons in semilinear wave equations. J. Math. Pures Appl. (9) 80 (2001), no. 1, 51--83.
Publications
Solitons on pseudo-Riemannian manifolds: stability and motion
– Electronic Research Announcements of the American Mathematical Society
(2000)
6,
75
Variational Approach to Uniform Rigid Rotation of Ginzburg-Landau Vortices
– Letters in Mathematical Physics
(2000)
52,
127
(doi: 10.1023/A:1007621017448)
Semilinear wave equations on pseudo-Riemannian manifolds: stability and motion of non-topological solitons
(2000)
351
Construction of entropy solutions for one dimensional elastodynamics via time discretisation
– Annales de l'Institut Henri Poincaré C, Analyse non linéaire
(2000)
17,
711
Periodic Solutions of the Abelian Higgs Model and Rigid Rotation of Vortices
– Geometric And Functional Analysis
(1999)
9,
568
(doi: 10.1007/s000390050096)
Uniform stability of monopoles
– Calculus of Variations and Partial Differential Equations
(1999)
8,
123
(doi: 10.1007/s005260050120)
Gradient Flow of the Superconducting Ginzburg-Landau Functional on the plane
– Communications in Analysis and Geometry
(1997)
5,
121
(doi: 10.4310/CAG.1997.v5.n1.a3)
Interaction of superconducting vortices and asymptotics of the Ginzburg-Landau flow
– Applied Mathematics Letters
(1996)
9,
27
(doi: 10.1016/0893-9659(96)00068-7)
The geodesic approximation for the Yang-Mills-Higgs equations
– Communications in Mathematical Physics
(1994)
166,
149
(doi: 10.1007/BF02099305)
Dynamics of Abelian Higgs vortices in the near Bogomolny regime
– Communications in Mathematical Physics
(1994)
159,
51
(doi: 10.1007/BF02100485)
- <
- 3 of 4