Publications: In proceedings
  1. A. Iserles & G.R.W. Quispel, "Why geometric numerical integration?", Discrete Mechanics, Geometric Integration and Lie-Butcher Series (2016).
  2. A.S. Fokas, A. Iserles & S.A. Smitheman, "The unified method in polygonal domains via the explicit Fourier transform of Legendre polynomials" Unified Transform for Boundary Value Problems, SIAM, Philadelphia (2015), 163–171.
  3. A. Iserles, "Three stories of high oscillation", Bulletin EMS 87 (2013) 18–23.
  4. M.J. Cantero & A. Iserles, "On a curious q-hypergeometric identity", Nonlinear Analysis: Stability, Approximation and Inequalities (P. Pardalos, H.M. Srivastava & P. Georgiev, eds), Springer-Verlag (2013), 121–126.
  5. A. Boettcher, S. Grudsky & A. Iserles, "The Fox–Li operator as a test and a spur for Wiener–Hopf theory", Essays in Mathematics and its Applications. In Honor of Stephen Smale's 80th Birthday (P.M. Pardalos & Th. Rassias, eds), Springer-Verlag (2012), 37&ndash48.
  6. M. Condon, A. Deaño & A. Iserles, "Asymptotic solvers for oscillatory systems of differential equations", SeMA Journal 53 (2011), 79–101.
  7. A. Iserles, "Magnus expansions and beyond", Contemporary Maths 539 (2011), 171–186.
  8. A. Iserles, S.P. Nørsett & S. Olver "Highly oscillatory quadrature: The story so far'', Proceedings of ENuMath, Santiago de Compostela (2006) (A. Bermudez de Castro et al., eds), Springer-Verlag, Berlin (2006), 97–118.
  9. A.M. Bloch & A. Iserles, "Aspects of generalized double-bracket flows'', in Group Theory and Numerical Analysis, CRM Proceedings 39 (2005), 65–75.
  10. A. Iserles, "On the numerical analysis of high oscillation'', in Group Theory and Numerical Analysis, CRM Proceedings 39 (2005), 149–163.
  11. A.M. Bloch & A. Iserles, "Optimality of double bracket and generalized double bracket flows'', in Proc. 42nd IEEE Conf. Decision & Control (2003), 528–532.
  12. B.J.C. Baxter & A. Iserles. "On the foundations of computational mathematics'', in Handbook of Numerical Analysis XI (P.G. Ciarlet & F. Cucker, eds), North-Holland, Amsterdam (2003), 3–34.
  13. A. Iserles, "Brief introduction to Lie-group methods'', in Collected Lectures on the Preservation of Stability under Discretization (D. Estep & S. Tavener, eds), SIAM, Philadelphia (2001), 123–143.
  14. M.D. Buhmann, A. Iserles & S.P. Nørsett, "Applications of radial basis functions: Sobolev-orthogonal functions, radial basis functions and spectral methods'', in Algorithms for Approximation IV (I. Anderson & J. Levesley, eds), Charlesworth Publ., Huddersfield (2002), 198–211.
  15. A. Iserles, "Numerical analysis in Lie groups'', in Foundations of Computational Mathematics, Oxford 1999 (R. DeVore, A. Iserles and E. Suli, eds), Cambridge University Press, Cambridge (2001), 105–123.
  16. C.J. Budd & A. Iserles, "Geometric integration: Numerical solution of differential equations on manifolds'', Phil. Trans Royal Soc. A 357 (1999), 945–956.
  17. A. Iserles, "Lie groups and the computation of invariants'', Self-Similar Systems (V.B. Priezzhev & V.P. Spiridonov, eds), JINR Dubna (1999), 133–148.
  18. A. Iserles & S.P. Nørsett, "Linear ODEs in Lie groups'', Proceedings of the 15th IMACS World Congress vol. II (A. Sydow, ed.), Wissenschaft & Technik Verlag, Berlin (1997), 589–594.
  19. A. Iserles, "Insight, not just numbers'', Proceedings of the 15th IMACS World Congress vol. II (A. Sydow, ed.), Wissenschaft & Technik Verlag, Berlin (1997), 1–9.
  20. A. Iserles, "Beyond the classical theory of computational ordinary differential equations'', in State of the Art in Numerical Analysis (I.S. Duff & G.A. Watson, eds), Oxford University Press, Oxford (1997), 171–192.
  21. A. Iserles, "Numerical methods on (and off) manifolds'', in Foundations of Computational Mathematics (F. Cucker and M. Shub, eds), Springer-Verlag, New York (1997), 180–189.
  22. A. Iserles & A. Zanna, "A scalpel, not a sledgehammer: Qualitative approach to numerical mathematics'', CWI Quarterly 9 (1996), 103–112.
  23. A. Iserles & Y. Liu, "Integro-differential equations and generalized hypergeometric functions'', ZAMM 76 (1996), 253–256.
  24. A. Iserles & A. Zanna, "Qualitative numerical analysis of ordinary differential equations'', in The Mathematics of Numerical Analysis (J. Renegar, M. Shub & S. Smale, eds), Lectures in Applied Maths 32, American Mathematical Society, Providence RI (1966), 421–442.
  25. M.P. Calvo, A. Iserles & A. Zanna, "Runge–Kutta methods on manifolds'', in Numerical Analysis: A.R. Mitchell's 75th Birthday Volume (G.A. Watson & D.F. Griffiths, eds), World Scientific, Singapore (1996), 57–70.
  26. A. Iserles & L. Littlejohn, "Polynomials orthogonal in a Sobolev space'', in Linear and Complex Analysis Problem Book II (V.P. Havin & N.K. Nikolski, eds), Lecture Notes in Mathematics, No. 1574, Springer-Verlag, New York (1994), 190–193.
  27. A. Iserles, "From Schrödinger spectra to orthogonal polynomials, via a functional equation'', in Approximation and Computation, (R.V.M. Zahar, ed.) ISNM 119, Birkhäuser-Verlag, Basel–Boston–Berlin (1994), 285–307.
  28. A. Iserles, "Dynamics of numerics'', Bull. IMA (1994) 30, 106–115.
  29. A. Iserles, "The dynamics of the Theodorus spiral'', Supplement B to Spirals: From Theodorus of Cyrene to Meta–Chaos (P.J. Davis), Hedrick Lectures 1990, Math. Assoc. Amer.
  30. M.D. Buhmann, A. Iserles & S.P. Nørsett, "Runge–Kutta methods for neutral differential equations'', in Contributions in Numerical Mathematics (R.P. Agarwal, ed.), World Scientific Series in Applicable Analysis, World Scientific, Singapore (1993), 85–98.
  31. A. Iserles & S.P. Nørsett, "Parallel Runge–Kutta methods'', in Numerical Ordinary Differential Equations, London 1989 (J. Cash and I. Gladwell, eds), Oxford Univ. Press (1992), 385–392.
  32. M.D. Buhmann & A. Iserles, "Numerical analysis of functional equations with a variable delay'', in Numerical Analysis, Dundee 1991 (D.F. Griffiths and G.A. Watson, eds), Longman (1992), 17–33.
  33. A. Iserles, P.E. Koch, S.P. Nørsett & J.M. Sanz-Serna, "Approximation and orthogonality in a Sobolev space'', in Algorithms for Approximation II (J.C. Mason and M.G. Cox, eds), Chapman and Hall (1990), 117–124.
  34. A. Iserles, "Nonlinear stability and asymptotics of ODE solvers'', in International Conference on Numerical Mathematics, Singapore 1988 (R.P. Agarwal, ed.), Birkhäuser ISNM Vol. 86 (1988), 225–236.
  35. A. Iserles, "Dynamical systems and nonlinear stability theory for numerical ODEs'', in Numerical Treatment of Differential Equations, Halle 1987 (K. Strehmel, ed.), Teubner (1988), 84–94.
  36. H.-P. Blatt, A. Iserles & E.B. Saff, "Remarks on the behavior of zeros of best approximating polynomials and rational functions'', in Approximation of Functions and Data (M.G. Cox and J. Mason, eds), Oxford Univ. Press (1987), 437–445.
  37. A. Iserles & S.P. Nørsett, "Error control of rational approximations with matrix argument'', in Approximation of Functions and Data (M.G. Cox and J.C. Mason, eds) Oxford Univ. Press (1987), 293–305.
  38. A. Iserles, "Order stars and stability barriers'', in Numerical Analysis, Dundee 1985 (D.F. Griffiths and G.A. Watson, eds), Longman (1986), 98–111.
  39. A. Iserles & S.P. Nørsett, "Bi-orthogonal polynomials'', in Orthogonal Polynomials, Bar-le-Duc 1984 (C. Brezinski et al., eds), Springer-Verlag LNiM 1171 (1985), 92–100.
  40. A. Iserles, "Order stars, contractivity and a Pick-type theorem'', in Rational Approximation and Interpolation (P.R. Graves-Morris, E.B. Saff and R.S. Varga, eds) Springer-Verlag LNiM 1105 (1984), 117–124.
  41. A. Iserles, "Order stars and the structure of Padé tableaux'', in Padé Approximation, Bad Honnef 1983 (H. Werner, ed.), Springer-Verlag LNiM 1071 (1984), 166–175.
  42. A. Iserles, "Padé and rational approximations to the exponential and their applications in numerical analysis'', in Padé Approximation and Convergence Acceleration Techniques (J. Gilewicz, ed.), Centre de Physique Theorique, Marseille (1981).
  43. A. Iserles, "Generalized order star theory'', in Rational Approximation, Theory and Application (H. van Rossum and M.G. de Bruin, eds), Springer-Verlag LNiM 888 (1981), 228–238.
  44. A. Iserles, "Efficient two-step numerical methods for parabolic partial differential equations'', in Analytical and Numerical Approaches to Asymptotic Problems in Analysis (O. Axelsson and L. Frank, eds), North Holland (1981), 319–326.