In proceedings and similar publications:
- A. Iserles, "Three stories of high oscillation", Bulletin EMS 87 (2013) 18-23.
- M.J. Cantero & A. Iserles, "On a curious q-hypergeometric identity", Nonlinear Analysis: Stability, Approximation and Inequalities (P. Pardalos, H.M. Srivastava & P. Georgiev, eds), Springer-Verlag (2013), 121-126.
- A. Boettcher, S. Grudsky & A. Iserles, "The Fox-Li operator as a
test and a spur for Wiener-Hopf theory", Essays in Mathematics and its Applications. In Honor of Stephen Smale's 80th Birthday (P.M. Pardalos & Th. Rassias, eds), Springer-Verlag (2012), 37-48.
- M. Condon, A. Deaño & A. Iserles, "Asymptotic
solvers for oscillatory systems of differential equations",
SeMA Journal 53 (2011), 79-101.
- A. Iserles, "Magnus
expansions and beyond", Contemporary Maths 539
(2011), 171-186.
- A. Iserles, S.P. Nørsett & S. Olver ``Highly
oscillatory quadrature: The story so far'', Proceedings of
ENuMath, Santiago de Compostela (2006) (A. Bermudez de Castro
et al., eds), Springer-Verlag, Berlin (2006), 97-118.
- A.M. Bloch & A. Iserles, ``Aspects
of generalized double-bracket flows'', in Group Theory and
Numerical Analysis, CRM Proceedings 39 (2005), 65-75.
- Arieh Iserles, ``On the
numerical analysis of high oscillation'', in Group Theory and
Numerical Analysis, CRM Proceedings 39 (2005), 149-163.
- A.M. Bloch & A. Iserles, ``Optimality
of double bracket and generalized double bracket flows'', in Proc. 42nd IEEE Conf. Decision & Control (2003), 528-532.
- B.J.C. Baxter & A. Iserles. ``On
the foundations of computational mathematics'', in Handbook
of Numerical Analysis XI (P.G. Ciarlet & F. Cucker, eds),
North-Holland, Amsterdam (2003), 3-34.
- A. Iserles, ``Brief introduction to Lie-group methods'', in Collected
Lectures on the Preservation of Stability under Discretization
(D. Estep & S. Tavener, eds), SIAM, Philadelphia (2001), 123-143.
- M.D. Buhmann, A. Iserles & S.P. Nørsett, ``Applications of
radial basis functions: Sobolev-orthogonal functions, radial basis
functions and spectral methods'', in Algorithms for
Approximation IV (I. Anderson & J. Levesley, eds),
Charlesworth Publ., Huddersfield (2002), 198-211.
- A. Iserles, ``Numerical analysis in Lie groups'', in
Foundations of Computational Mathematics, Oxford 1999
(R. DeVore, A. Iserles and E. Suli, eds), Cambridge University
Press, Cambridge (2001), 105-123.
- C.J. Budd & A. Iserles, ``Geometric integration: Numerical solution of
differential equations on manifolds'', Phil. Trans Royal
Soc. A 357 (1999), 945-956.
- A. Iserles, ``Lie groups and the computation of invariants'',
Self-Similar Systems (V.B. Priezzhev & V.P. Spiridonov, eds),
JINR Dubna (1999), 133-148.
- A. Iserles & S.P. Nørsett, ``Linear ODEs in Lie groups'',
Proceedings of the 15th IMACS World Congress vol. II (A. Sydow,
ed.), Wissenschaft & Technik Verlag, Berlin (1997), 589-594.
- A. Iserles, ``Insight, not just numbers'', Proceedings of the 15th
IMACS World Congress vol. II (A. Sydow, ed.), Wissenschaft &
Technik Verlag, Berlin (1997), 1-9.
- A. Iserles, ``Beyond the classical theory of computational ordinary
differential equations'', in
State of the Art in Numerical Analysis (I.S. Duff
& G.A. Watson, eds), Oxford University Press, Oxford (1997), 171-192.
- A. Iserles, ``Numerical methods on (and off) manifolds'', in Foundations of
Computational Mathematics (F. Cucker and M. Shub, eds),
Springer-Verlag, New York (1997), 180-189.
- A. Iserles & A. Zanna, ``A scalpel, not a sledgehammer: Qualitative
approach to numerical mathematics'', CWI Quarterly 9
(1996), 103-112.
- A. Iserles & Y. Liu, ``Integro-differential equations and generalized
hypergeometric functions'', ZAMM 76 (1996), 253-256.
- A. Iserles & A. Zanna, ``Qualitative numerical analysis of ordinary
differential equations'', in The Mathematics of Numerical
Analysis (J. Renegar, M. Shub & S. Smale, eds), Lectures in
Applied Maths 32, American Mathematical Society,
Providence RI (1966), 421-442.
- M.P. Calvo, A. Iserles & A. Zanna, ``Runge-Kutta
methods on manifolds'',
in Numerical Analysis: A.R. Mitchell's 75th Birthday Volume
(G.A. Watson & D.F. Griffiths, eds), World Scientific, Singapore (1996),
57-70.
- A. Iserles & L. Littlejohn, ``Polynomials orthogonal in a
Sobolev space'', in Linear and Complex Analysis Problem Book
II (V.P. Havin & N.K. Nikolski, eds), Lecture Notes in
Mathematics, No. 1574, Springer Verlag, New York (1994), 190-193.
- A. Iserles, ``From Schrödinger spectra to orthogonal polynomials,
via a functional equation'', in Approximation and
Computation, (R.V.M. Zahar, ed.) ISNM 119,
Birkhäuser Verlag, Basel-Boston-Berlin (1994), 285-307.
- A. Iserles, ``Dynamics of numerics'', Bull. IMA 30, 106-115
(1994).
- A. Iserles, ``The dynamics of the Theodorus spiral'', Supplement B
to Spirals: From Theodorus of Cyrene to Meta-Chaos (P.J.
Davis), Hedrick Lectures 1990, Math. Assoc. Amer.
- M.D. Buhmann, A. Iserles & S.P. Nørsett, ``Runge-Kutta methods
for neutral differential equations'', in Contributions
in Numerical Mathematics (R.P. Agarwal, ed.), World Scientific
Series in Applicable Analysis, World Scientific, Singapore (1993),
85-98.
- A. Iserles & S.P. Nørsett, ``Parallel Runge-Kutta
methods'', in Numerical Ordinary Differential Equations, London
1989 (J. Cash and I. Gladwell, eds), Oxford Univ. Press (1992),
385-392.
- M.D. Buhmann & A. Iserles, ``Numerical analysis of functional equations
with a variable delay'', in Numerical Analysis, Dundee 1991
(D.F. Griffiths and G.A. Watson, eds), Longman (1992), 17-33.
- A. Iserles, P.E. Koch, S.P. Nørsett & J.M. Sanz-Serna,
``Approximation and orthogonality in a Sobolev space'', in
Algorithms for Approximation II (J.C. Mason and M.G. Cox, eds),
Chapman and Hall (1990), 117-124.
- A. Iserles, ``Nonlinear stability and asymptotics of ODE
solvers'', in International Conference on Numerical Mathematics,
Singapore 1988 (R.P. Agarwal, ed.), Birkhäuser ISNM Vol. 86
(1988), 225-236.
- A. Iserles, ``Dynamical systems and nonlinear stability theory for
numerical ODEs'', in Numerical Treatment of
Differential Equations, Halle 1987 (K. Strehmel, ed.), Teubner
(1988), 84-94.
- H.-P. Blatt, A. Iserles & E.B. Saff, ``Remarks on the
behavior of zeros of best approximating polynomials and rational
functions'', in Approximation of Functions and Data (M.G. Cox
and J. Mason, eds), Oxford Univ. Press (1987), 437-445.
- A. Iserles & S.P. Nørsett, ``Error control of rational
approximations with matrix argument'', in Approximation of
Functions and Data (M.G. Cox and J.C. Mason, eds) Oxford Univ. Press
(1987), 293-305.
- A. Iserles, ``Order stars and stability barriers'', in
Numerical Analysis, Dundee 1985 (D.F. Griffiths and G.A. Watson,
eds), Longman (1986), 98-111.
- A. Iserles & S.P. Nørsett, ``Bi-orthogonal polynomials'', in
Orthogonal Polynomials, Bar-le-Duc 1984 (C. Brezinski et al., eds),
Springer Verlag LNiM 1171 (1985), 92-100.
- A. Iserles, ``Order stars, contractivity and a Pick-type theorem'', in
Rational Approximation and Interpolation (P.R. Graves-Morris,
E.B. Saff and R.S. Varga, eds) Springer Verlag LNiM 1105 (1984),
117-124.
- A. Iserles, ``Order stars and the structure of Padé tableaux'', in
Padé Approximation, Bad Honnef 1983 (H. Werner, ed.),
Springer Verlag LNiM 1071 (1984), 166-175.
- A. Iserles, ``Padé and rational approximations to the
exponential and their applications in numerical analysis'', in
Padé Approximation and Convergence Acceleration Techniques
(J. Gilewicz, ed.), Centre de Physique Theorique, Marseille (1981).
- A. Iserles, ``Generalized order star theory'', in Rational
Approximation, Theory and Application (H. van Rossum and M.G. de
Bruin, eds), Springer Verlag LNiM 888 (1981), 228-238.
- A. Iserles, ``Efficient two-step numerical methods for parabolic
partial differential equations'', in Analytical and Numerical
Approaches to Asymptotic Problems in Analysis (O. Axelsson and
L. Frank, eds), North Holland (1981), 319-326.